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Fig. 2. Calibration error in a reference termination
due to insertion-loss measurement error.
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Fig. 3. S-band WR-430 waveguide liquid-
helium-cooled termination.

ation requires better than 0.002-dB accuracy
in the insertion-loss measurements [8].

ExPERIMENTAL CALIBRATED
THERMAL TERMINATION

An S-band (Fig. 3) waveguide liquid-
helium-cooled thermal termination [3] was
calibrated to high precision using (11).
Waveguide construction was used to mini-
mize losses. This termination is normally
installed in a 10-liter-glass Dewar, and has
about 10 hours of operating life. The stain-
less-steel section of copper-plated waveguide
located between the external copper-
plated section containing the cooled termi-
nation and the mounting flange had an in-
sertion loss of L; of 0.009 dB. The outer sec-
tion of waveguide above the mounting
flange had at ambient temperature an
insertion loss Ly of 0.008 dB. (This includes
the polystyrene waveguide window.) With
reference to the input flange, the equivalent
noise temperature is 5.0°K [from (11)] over
the frequency ranges where the termination
is matched. An accuracy of 10 per cent in the
calibration of the transmission line would re-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

sult in less than 0.1°K error in the equiv-
alent noise temperature.

C. T. STELZRIED

Telecommunications Div.

Jet Propulsion Lab.

California Institute of Technology

Pasadena, Calif.
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C

Graphical Procedures for Finding
Matrix Elements for a Lattice Net-
work and a Section of
Transmission Line

Four-terminal networks and two-port
junctions can be represented by several
different well-known 2 by 2 matrices.
Tables relating the elements in the various
matrices have been published.’=5 Graphical
procedures are presented here which may be
used to determine the elements in these
matrices for a lattice network and a section
of transmission line, as shown in Fig. 1.

In the discussion which follows,

I'zy=z-1/z+1)
and
zD)=a+D/a-D

Derivations are omitted because they are
simply boring algebraic manipulations.
The elements of the scattering matrix
for a lattice network are given by
2Su =28 = I'z.) + I'(zy)
2512 = 2Sn - P(Za/) + F(Zb/)
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Fig. 1. The two networks considered.

where it is assumed that two transmission
lines with characteristic impedance R, are
connected to the network, Z,’=Z,/R,, and

=Zp/Ry. A graphic method for finding
these elements is illustrated in Fig. 2, and
either a Smith or a Carter chart®’ may be
used.

Logarithmic transmission-line charts3—10
are used to find the matrix elements for a
section of transmission line and a lattice
network. The following points are located on
the chart, as shown in Fig. 3: E at the left
Z=w, Fat Z=0,G at Z=1 £ —90°= —j,
and H at the right Z= «. The points J and
K are plotted at Zy=Ro/Zy, and Zx=2,/R,
=1/Z;. The point L is located so that
(EL)/EH)=0a/28, where y=a-+j8. The
point M is located on the line LH at the
horizontal distance d/\,=gd/2w from H as
shown. The point N is the midpoint of the
line MH. For a lattice network,

= \/ZZ;I = \/ZTZ—Z)/RU
Zy = NZ]Zd = N7/ Za
and
=VZ.Z,

The point P is located on the line HJ so
that JP=HJ. The point Q is located on the
line FK so that KQ =FK. The lines RG, K.,
UJ, QW, and XP are drawn parallel to the
line LH. The various points are located so
that

RG=MN=NH=RS=TV=T7J
= QW = XP
and
MU=FK=KQ=NV=VX=3W
=H]=JP
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Correspondence

1965

IMPEDANCE OR ADMITTANCE COORDINATES

Fig. 2. Construction for finding S11 and S12 for a lattice network, by using a circular transmission-line chart.
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Fig. 3. Construction for finding matrix elements,
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Let k and ¢ =exp( —yd) denote the voltage
reflection coefficients corresponding to Zx
and Zy, respectively. The voltage reflection
coefficients for all points are simple func-
tions of k and ¢.

In some cases, the matrix element is
found by determining the impedance Z
corresponding to the element as a voltage re-
flection coefficient I'. The impedance is
plotted on a transmission-line chart, and the
value of T is read off the chart to obtain the
desired matrix element. If the impedance
has a negative real component, or an angle
outside the —90° to +90° range, an ex-
tended transmission-line chart!! may be
used. Since extended charts are not readily
available, a conventional chart may be used
by recalling that z(1/)= —2zZ(IM. One
plots —Z, reads c= 1/T, and computes
I'=1/c.

The elements of the Z matrix are given

by
Zn = Zgg = Zg COth "{d = ZQZ(U'Z) = Z()ZM
le = Zg1 = Zo/Sinh Yd

The term sinh ~d, which appears in other
matrix elements, is given by

Z(jsinh vd) = — [Z(—jo)]* = — Zg*
The elements of the matrix are given by
Y11 = Yo coth Td/Z[) = ZM/Z()
Y12 = Yo = 1/Z; sinh vd

Il

The elements of the ABCD matrix are
given by

Z(4) = Z(D) = cosh yd = — [Z()]?
= — Zy*
B = Z; sinh vd

C = sinh yd/Z,

The scattering matrix elements are
given by
Z(S11) = Z(Sw) = Z(k)/Z(ke?) = ZxZy
= Zy/Z;
and
Z(S19) = Z(Sn) = Z(a)/Z(Kk%) = Zy/Zx

The less known r matrix is defined by
E12) _ (1'11 1‘12) (Ezz)
Eyy ry rze/ \En
The elements of this matrix are given by

Z(rn) = Z(0)/Z(K*/o) = ZnZw

Z(r13) = Z(—ko)Z(k/o) = ZvZs
Ia1 = — I
Z(rys) = — Z(o)/Z(k%) = — Zy/Zx
H. F. MaTtHIS
Dept. of Elec. Engrg.
The Ohio State University
Columbus, Ohio
1 Mathis, H. F., Extended transmission-line

charts, Electronzcs, vol 33, Sep 23, 1960, pp 76, 78.
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Note on Tetrahedral Junction

Weiss [1] has described a reactive wave-
guide switch consisting of a ferrite rod at the
junction of two mutually cross-polarized
rectangular waveguides, as shown in Fig. 1.
When the ferrite rod is unmagnetized, the
system represents a transition to cutoff
waveguide. When the ferrite rod is lon-
gitudinally magnetized, the RF energy is
coupled to the crossed waveguide.

Weiss [2] has noted that the modes of
propagation on the tetrahedral junction are
the same as those on the Reggia and Spencer
phase shifter [3]. He has described the useful
operating range of these devices as extending
from the onset of the dielectric waveguide
effect to the onset of elliptical Faraday rota-
tion. In this range, the Weiss model indicates
that the composite ferrite air waveguide can
support only a single elliptically polarized
mode of propagation. As the ferrite rod is
increased above a critical diameter, a second
ellipitically polarized mode becomes prop-
agating and the system exhibits elliptical
Faraday rotation, that is, rotation is sup-
pressed in the range of ferrite diameters for
which only a single elliptically polarized
mode is propagating.

It is the purpose of this note to describe
the tetrahedral junction in terms of the
single-tapered mode coupler. However, we
shall first briefly compare mode interference
couplers with those that are single tapered.

Miller [4] has shown that when two trans-
mission lines with equal-phase velocities are
continuously coupled over some length,
power introduced into one line will be com-
pletely transferred periodically back and
forth between them. Such a system can
generally support two forward modes of
propagation, which have equal amounts of
power in each line and which propagate with
different velocities through the structure.
One is called the even mode, because the
electric field is in the same direction in each
line; the other is called the odd mode, be-
cause the fields are oppositely oriented.
Power transfer is effected by the interfer-
ence between these modes, and this type of
coupler is therefore known as a mode inter-
ference coupler; in general, itis frequency de-
pendent. This is what occurs in Faraday
structures where the normal modes are
circularly polarized. If power is introduced
into both lines to correspond to one of the
normal modes, no coupling will take place
and the power will be emergent in the same
normal mode. If the two coupled modes have
a fixed-phase difference between them, the
power transfer is still periodic, but now the
normal modes have unequal powers in the
two lines and the power division is de-
pendent on the ratio of velocity difference to
coupling factor.

More recently Cook [5] has shown that
if the phase velocity difference between the
two coupled lines is made grossly different
at one end of the coupled lines, equal in the
center, and again unequal in the opposite
sense, complete power transfer with only a
residual power fluctuation is effected, which,
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Fig. 1. The tetrahedral junction.

moreover, is independent of coupling factor
and frequency, provided the coupling length
is long. When this is so, excitation of one of
the coupled lines corresponds to all the
power in one of the forward normal modes of
propagation, and the power division is
simply dependent on the final-phase differ-
ence between the coupled lines. In such a
system, one of the normal modes of propaga-
tion is discriminated against, and power
transfer between the coupled lines occurs
with only a single forward normal mode of
propagation.

Fox [6] has enlarged on Cook’s scheme
and has shown that by varying both the
velocities of the coupled lines and the
coupling factor, the residual power fluctua-
tion is eliminated. In particular, the differ-
ence in phase velocity is made to vary
cosinusoidally and the coupling factor
sinusoidally.

In mode interference couplers, the phase
relation between the electric fields in the
two lines is 90°. However, for this medium,
the phase difference is 0° or 180°, depending
on whether the power is introduced in the
line having the higher or lower phase
velocity; hence the coupled modes are the
normal modes for the local cross section.

In the switch described by Weiss, the
system represents a transition to cutoff
waveguide when the ferrite is unmagnetized.
At the plane of symmetry, the waveguide
boundary conditions impose a sharp cross-
over of the phase velocities of the coupled
modes. When the ferrite rod is magnetized,
this phase distribution corresponds to a zero-
dB coupler and the energy is accepted by the
rotated waveguide. We also note that the
wave is circularly polarized at the plane of
symmetry.

Because the phase transition between the
coupled modes is discontinuous, both normal
modes are excited. However, one of these is
cut off; hence no beat interference results. If
at the same time the backward propagating
mode is matched out, the power is trans-
mitted past the junction.

More generally, the tetrahedral junction
is only one example of several zero-dB
couplers that rely on the single-tapered
mode coupling theory in which one of the
normal modes is cut off.

A second example was realized by taking
an X-band 3-dB sidewall hybrid and placing
metal inserts into the coupling region, as
shown in Fig. 2. In this manner the TEy
mode, which is one of the normal modes of
the hybrid, was cut off. The insertion loss
for this structure between ports 1 and 2 was



