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Fig. 2. Calibration error in a reference termination
due to insertion-loss measurement error.

Fig. 3. S-band WR-430 waveguide liquid.
helium-cooled termination.

ation requires better than 0.002-dB accuracy
in the insertion-loss measurements [8 ].

EXPERIMENTAL CALIBRATED

THERMAL TERMINATION

An S-band (Fig. 3) waveguide liquid-

helium-cooled thermal termination [3] ~a~
calibrated to high precision using (11).
Waveguide construction was used to mini-
mize losses. This termination is normally
installed in a 10-liter-glass Dewar, and has

about 10 hours of operating life. The stain-
less-steel section of copper-plated waveguide
located between the external copper-
plate section containing the cooled termi-
nation and the mounting flange had au in-
sertion loss of LI of 0.009 dB. The outer sec-

tion of waveguide above the mounting
flange had at ambient temperature an
insertion loss L2 of 0.008 dB. (This includes

the polystyrene waveguide window. ) With

reference to the input flange, the equivalent
noise temperature is 5.0°K [from (11)] over
the frequency ranges where the termination
is matched. An accuracy of 10 per cent in the

calibration of the transmission line would re-

sult in less than O. l°K error in the equiv-

alent noise temperature.
C. T. STELZRIED

Telecommunications Div.

Jet Propulsion Lab.
California Institute of Technology
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Graphical Procedures for Finding

Matrix Elements for a Lattice Net-

work and a Section of

Transmission Line

Four-terminal networks and two-port
junctions can be represented by several
different well-known 2 by 2 matrices.

Tables relating the elements in the various
matrices have been published.1–6 Graphical
procedures are presented here which may be
used to determine the elements in these
matrices for a lattice network and a section
of transmission line, as shown in Fig. 1.

In the discussion which follows,

r(z) = (z – 1)/(2+ 1)

and

z(r) = (1+ r)/(1 – r)

Derivations are omitted because they are

simply boring algebraic manipulations.
The elements of the scattering matrix

for a lattice network are given by

2S,1 = 2S22 = r(2.’)+ r(26’)
2S,1 = 2S2, = – r(,z.’)+ r(2b9
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Fig. 1. The two networks considered.

where it is assumed that two transmission
lines with characteristic impedance RO are
connected to the network, Za’ = Za/RO, and
2*’ = Zb/RO. A graphic method for finding

these elements is illustrated in Fig. 2, and

either a Smith or a Carter charte, 7 may be

used.

Logarithmic transmission-line charts~–lo

are used to find the matrix elements for a

section of transmission line and a lattice
network. The following points are located on
the chart, as shown in Fig. 3: E at the left
Z=m, Fat Z=O, Gat Z=l Z–900=–j,
and Hat the right Z= m. The points Y and
K are plotted at ZJ = R,/Zo, and ZK = Zo/R6

= l/ZJ. The point L is located so that
(EL)/EH) = a/2fi, where y= a +jf?. The

point M is located on the line LH at the

horizontal distance d/& = fld/2 ~ from H as

shown. The point N is the midpoint of the

line MH. For a lattice network,

.— —
ZK = ~Za zb’ = ~zazb/RO

—. _-—
ZN = 4zb’/za’ = ~zb/za

and

Zo = ~zazb

The point P is located on the line HJ so
that YP =HJ. The point Q is located on the
line FK so that Z<Q =FK. The lines RG, KS,

UJ, QW, and XP are drawn parallel to the
line LH. The various points are located so

that

~=M.!7=lVH=E=m=~
——

=D7=XP

and

MU= FK=KQ=NV=VX=SW
——

——
=HJ=JP
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Fig. 2. Construction fol finding S~r and Sn for a lattice network, by using a cmcular transmission-lme chart.

Fig. 3. Construction for finding matrix elements, by using a logarithmic transmission-line chart.
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Let k and u = exp( – yd) denote the voltage
reflection coefficients corresponding to ZK
and ZiV, respectively. The T-oltage reflection
coefficients for all points are simple func-
tions of k and a.

In some cases, the matrix element is

found by determining the impedance Z

corresponding to the element as a voltage re-

flection coefficient r. The impedance is

plotted on a transmission-line chart, and the

value of r is read off the chart to obtain the
desired matrix element. If the impedance

has a negative real component, or an angle

outside the —90” to +90° range, an e~-
tended transmission-line chartll may be
used. Since extended charts are not readily

available, a conventional chart may be used
by recalling that 2( I/r)= –Z(r). One
plots –Z, reads c = l/r, and computes

r=ljc.
The elements of the Z matrix are given

by

ZM = Zm = Zo coth yd = zoz(uz) = zoz.u

212 = Z!l = Z,/sinh ~d

The term sinh yd, which appears in other
matrix elements, is given by

Z(j sinh I@ = – [Z(–jC) ]’ = – Z#

The elements of the matrix are given by

YU = Y22 = coth yd/Zo = Z.ir/Zo

Y,, = Y, I = l/ZO sink Yd

The elements of the ABCD matrix are

given by

Z(A) = Z(D) = cosh yd = – [Z(a) ]2

—— – z’#

B = ZO sinh yd

C = sinh yd/ZO

The scattering matrix elements are
given by

2(S11) = 2(S22) = Z(k) /Z(ka2) = z~zu

= zu/zJ

and

Z(S,Z) = 2(S,,) = Z(u) /Z(k2u) = ZN/Zx

The less known r matrix is defined by

(2:) = c: :)(::)

The elements of this matrix are given by

z(r,,) = Z(u) /Z(k’/u) = Z,VZW

Z(rl.J = Z(–ku)Z(k/u) = ZVZ,S

?91 = — I-12

Z(r,,) = – Z(U) /2(4%20) = – zN/.%
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Note on Tetrahedral Junction

Weiss [1] has described a reactive wave-

guide switch consisting of a ferrite rod at the
junction of two mutually cross-polarized

rectangular waveguides, as shown in Fig. 1.
When the ferrite rod is unmagnetized, the
system represents a transition to cutoff

waveguide. When the ferrite rod is lon-

gitudinally magnetized, the RF energy is

coupled to the crossed waveguide.

Weiss [2] has noted that the modes of

propagation on the tetrahedral junction are

the same as those on the Reggia and Spencer

phase shifter [3]. He has described the useful

operating range of these devices as extending

from the onset of the dielectric waveguide

effect to the onset of elliptical Faraday rota-

tion. In this range, the Weiss model indicates

that the composite ferrite air waveguide can

support only a single elliptically polarized

mode of propagation. As the ferrite rod is
increased above a critical diameter, a second

elliptically polarized mode becomes prop-
agating and the system exhibits elliptical

Faraday rotation, that is, rotation is sup-
pressed in the range of ferrite diameters for

which only a single elliptically polarized
mode is propagating.

It is the purpose of this note to describe

the tetrahedral junction in terms of the
single-tapered mode coupler. However, we
shall first briefly compare mode interference
couplers with those that are single tapered.

Miller [4] has shown that when two trans-
mission lines with equal-phase velocities are

continuously coupled over some length,

power introduced into one line will be com-

pletely transferred periodically back and
forth between them. Such a system can
generally support two forward modes of
propagation, which have equal amounts of
power in each line and which propagate with
different velocities through the structure.

One is called the even mode, because the
electric field is in the same direction in each
line; the other is called the odd mode, be-
cause the fields are oppositely oriented.
Power transfer is effected by the interfer-

ence between these modes, and this type of

coupler is therefore known as a mode inter-
ference coupler; in general, it is frequency de-

pendent. This is what occurs in Faraday
structures where the normal modes are

circularly polarized. If power is introduced
into both lines to correspond to one of the
normal modes, no coupling will take place
and the power will be emergent in the same
normal mode. If the two coupled modes have
a fixed-phase difference between them, the
power transfer is still periodic, but now the
normal modes have unequal powers in the

two lines and the power division is de-
pendent on the ratio of velocity difference to
coupling factor.

More recently Cook [5] has shown that
if the phase velocity difference between the

two coupled lines is made grossly different
at one end of the coupled lines, equal in the
center, and again unequal in the opposite
sense, complete power transfer with only a
residual power fluctuation is effected, which,
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Fig. 1. The tetrahedral Junction.

moreover, is independent of coupling factor

and frequency, provided the coupling length
is long. When this is so, excitation of one of
the coupled lines corresponds to all the
power in one of the forward normal modes of
propagation, and the power division is
simply dependent on the final-phase differ-

ence between the coupled lines. In such a

system, one of the normal modes of propaga-

tion is discriminated against, and power
transfer between the coupled lines occurs

with only a single forward normal mode of
propagation.

Fox [6] has enlarged on Cook’s scheme
and has shown that by varying both the

velocities of the coupled lines and the
coupling factor, the residual power fluctua-

tion is eliminated. In particular, the differ-
ence in phase velocity is made to vary

cosinusoidally and the coupling factor
sinusoidally.

In mode interference couplers, the phase
relation between the electric fields in the

two lines is 90°. However, for this medium,

the phase difference is O“ or 180°, depending
on whether the power is introduced in the
line having the higher or lower phase

velocity; hence the coupled modes are the
normal modes for the local cross section.

In the switch described by lVeiss, the
system represents a transition to cutoff
waveguide when the ferrite is unmagnetized.
At the plane of symmetry, the waveguide

boundary conditions impose a sharp cross-

over of the phase velocities of the coupled
modes. When the ferrite rod is magnetized,

this phase distribution corresponds to a zero-

dB coupler and the energy is accepted by the

rotated waveguide. We also note that the

wave is circularly polarized at the plane of
symmetry.

Because the phase transition between the
coupled modes is discontinuous, both normal
modes are excited. However, one of these is
cut off; hence no beat interference results. If
at the same time the backward propagating
mode is matched out, the power is trans-
mitted past the junction.

More generally, the tetrahedral junction
is only one example of several zero-dB

couplers that rely on the single-tapered
mode coupling theory in which one of the

normal modes is cut off.

A second example was realized by taking
m X-band 3-dB sidewall hybrid and placing
metal inserts into the coupling region, as

:hown in Fig. 2. In this manner the TE,O
mode, which is one of the normal modes of

the hybrid, was cut off. The insertion loss
‘or this structure between ports 1 and 2 was


